
Magnetostatics



Topics 
magnetic boundary conditions, 
inductors and inductances, 
magnetic energy



Magnetostatic Boundary Conditions
Will use Ampere’s circuital law and Gauss’s law to derive normal and 
tangential boundary conditions for magnetostatics. 

Ampere’s circuit law:
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The current enclosed by the path is 

We can break up the circulation of H into four integrals:
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Now combining our results (i.e., Path 1 + Path 2 + Path 3 + Path 4), we obtain

A more general expression for the first magnetostatic boundary 
condition can be written as 
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where a21 is a unit vector normal going from media 2 to media 1. 

Magnetostatic Boundary Conditions
0

T2 T T T2 .
d

c w

d H dL H w


    H L a a� �Path 3:

Path 4:

 T1 T2d wH H  H L�� encI KdW K w  
Equating

Tangential BC:

encd I H L��ACL:



The tangential magnetic field intensity is 
continuous across the boundary when the 
surface current density is zero. 
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Important Note:

Special Case: If the surface current density K = 0, we get
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Using the above relation, we obtain
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The tangential component of the magnetic flux density B is not continuous 
across the boundary.

Therefore, we can say that T1 T2B B
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Magnetostatic Boundary Conditions

Gauss’s Law for Magnetostatic fields:
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To find the second boundary condition, we center a Gaussian pillbox 
across the interface as shown in Figure. 

We can shrink h such that the flux out of the side of the pillbox is 
negligible.  Then we have 
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Thus, we see that the normal component of the 
magnetic flux density must be continuous across 
the boundary. 

We know that

Important Note:

Using the above relation, we obtain

The normal component of the magnetic field intensity is not continuous 
across the boundary (but the magnetic flux density is continuous).

Therefore, we can say that
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Magnetostatic Boundary Conditions
Example 3.11:  The magnetic field intensity is given as H1 = 6ax + 2ay + 3az
(A/m) in a medium with r1 = 6000 that exists for z < 0.  We want to find H2 in 
a medium with r2 = 3000 for z >0. 

Step (a) and (b): The first step is to break H1 into its normal component (a) and 
its tangential component (b).  
Step (c): With no current at the interface, the tangential component is the same 
on both sides of the boundary.  
Step (d): Next, we find BN1 by multiplying HN1 by the permeability in medium 1.  
Step (e): This normal component B is the same on both sides of the boundary. 
Step (f): Then we can find HN2 by dividing BN2 by the permeability of medium 2.  
Step (g): The last step is to sum the fields . 


